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AbstractThis paper describes how a Java1 virtual machinecan use the inherent concurrency of Java programson a massively parallel processor machine (MPP)like NEC Cenju-3. An application written with theJava programming language has two di�erent waysto introduce concurrency; threads and processes.While it is possible to introduce parallelism by us-ing di�erent processes, the granularity is likely tobe coarse and applications would have to be writtenspeci�cally for parallel machines or would lack 
ex-ibility, scalability and the level of parallelism wouldbe very low. On the other hand, while most non-trivial Java applications are already highly multi-threaded, the problem of locality of objects sharedbetween threads makes it di�cult to take advan-tage of the availability of many processors. Sincethe availability of multi-threaded applications is go-ing to be extremely large, there is much to gain inbeing able to exploit the concurrency of such appli-cations. This is what we try to address in this paperby describing the issues raised in the implementa-tion of a parallel Java virtual machine for Cenju-3.This paper illustrates the use of low-level communi-cations and remote DMA accesses in implementing adistributed shared memory for the Java virtual ma-chine.
1 IntroductionThe computing world is becoming more and morefocused on the distribution of services over the In-ternet, and it is widely believed that such a growthwill go on for a few years at the very least. In�Currently in Laboratoire de Syst�emes d'Exploitation,D�epartement d'Informatique, �Ecole Polytechnique F�ed�eralede Lausanne, Switzerland.1Java is a trademark of Sun Microsystems, Inc.

this context, the Java programming language, intro-duced by Sun Microsystems in April 1995, tries toaddress the issue of programming distributed appli-cations on the Internet but, so far, the developmenthas mainly been oriented towards clients while is-sues concerning servers have been greatly ignored.With the worldwide success met by the Java tech-nology and its current and future performance im-provement, it can be expected that network serversthat are making full use of this technology will beginto play a very important role in the near future.With their performance and scalability, massivelyparallel machines have a good opportunity to getinto new horizons and play a major role as servers onthe Internet. This direction might become especiallyimportant if, as many people claim, the future willsee billions of independent Internet devices and afew very powerful servers providing the computingpower and most of the information. Although a littleextreme, this view is quite correct and servers likeAltaVista (http://www.altavista.digital.com/)seem to prove it.Enabling a parallel machine to run Java bytecodeaims at solving some of the weakest points of mas-sively parallel machines. Whenever a new machine isbuilt, many applications need to be ported to exploitthe new architecture. This is very time consumingand usually results in applications being availableonly after a long period of time. If most of the ap-plication are available as Java bytecode, the portinge�ort is signi�cantly reduced. The increasing avail-ability of Java applications directly contribute to themachine. Further, if care is taken over time to opti-mize the virtual machine, every application runningon top of it directly bene�t from this e�ort.This paper presents some of the main issues in im-plementing a Java Virtual Machine for Cenju-3 andpresents an implementation of a distributed mem-50



ory suitable for both Cenju-3 and the Java virtualmachine.The paper is organized as follows: Section 2 givessome background information on Cenju-3 and con-currency in the Java programming language. Sec-tion 3 discusses some of the issues in building aparallel Java virtual machine. Section 4 shows theissues in sharing objects and presents some consis-tency protocols for distributed shared memory. Sec-tion 5 describes the distributed shared memory forparallel Java on Cenju-3.
2 Background2.1 Cenju Network Interface (NIF)Although Cenju-3 provides communication facilitieswith Mach IPC, it also has a native high-speed, low-latency communication interface called NIF [MKI94]which we directly used in building our shared ob-jects system. The functionalities of NIF include fast,short messages and DMA transfers that can be botheither unicast or multicast. A hardware multicastwhich cost is equivalent to the peer-to-peer commu-nication is very interesting for building an e�cientshared memory system as shown in [TKB94]. But,two simultaneous multicasts which destination setsoverlap each other may result in a network deadlock.Hence its use should be restricted to one processoronly. This implies using a sequencer on a PE forprocessing multicasts, which has the very nice side-e�ect of ensuring a total order of delivery.2.2 Concurrency in JavaThe Java programming language inherently sup-ports concurrency [Lea97]. As a result, applicationswritten in this language tend to show a high degreeof concurrency. The language provides a few basicconstructs designed to support concurrent program-ming:� Initiate concurrency. In order to create concur-rency, the language provides the standard classjava.lang.Thread. Each time this class is in-stantiated, a new thread is generated.� Mutual exclusion. In order to control theexecution of code and guarantee mutual ex-clusion, the language provides the keywordsynchronized.� Synchronization. It is possible to synchro-nize threads with wait(), notify(), andnotifyAll() de�ned in java.lang.Object.

Since applications will rely on this, it is importantto know the guarantees made by the speci�cation. Aparallel virtual machine | or any virtual machine| should at least provide the following guarantees:� Priority. Although Java supports 10 levelsof priority for its threads, conformance is notstrictly enforced by the speci�cation. As a re-sult, no assumption based on thread prioritiescan be made by Java developers.� Atomic update. Java guarantees that basic op-erations (most bytecode instructions) are exe-cuted atomically. This includes accesses (reador write) to all built-in scalar types except longand double.� Cache issue. Except for variables marked asvolatile, there is no guarantee that assign-ments performed in one thread will be seen inanother thread.� Mutual exclusion. A lock is associated with eachobject. Code quali�ed as synchronized beginsby acquiring the lock associated with the object,executed its code, and releases the lock beforeleaving. Mutual exclusion is thus guaranteedfor all piece of code protected by the same lock(i.e., the same object).
3 A Parallel Java3.1 Implicit and Explicit ParallelismAt the language level, parallelism can be tackled intwo ways: implicit or explicit. The choice is usu-ally a trade-o� between ease of programming andperformance.In building a Java VM for a machine like Cenju,one of the strongest motivation is to bene�t from ap-plications developed for the PC market. This impliesthat normal bytecode should execute on the ma-chine. Applications developed for the Cenju shouldalso be executable on any other architecture. But, tomaximize performance, we need to optimize aspectslike the placement of thread. The idea is to embedhints on these matters, through attributes [LY96].Then, a parallel compiler can generate annotatedbytecode for the parallel virtual machine. These an-notation give hints to the virtual machine to solveproblems like the placement of threads on each PE.The same code is executable by any other Java vir-tual machine since the hint are not understand andhence ignored.51



We advocate a 
exible approach that allows bothan implicit and an explicit approach to parallelism.3.2 Location transparencyIn order to exploit the concurrency introduced bythe multi-threaded aspect of applications written inJava, a thread should be allowed to run on any PE,without any constraint. This requirement impliesthat the virtual machine has to provide locationtransparency for threads. So, it makes it possible foran application to have its threads running on di�er-ent PEs. Sharing objects between two processors isa key step toward providing location transparencyfor threads.
4 Sharing Java ObjectsIn order to share data between processors, a dis-tributed shared memory system is needed. We havebuilt one making use of broadcast DMA transfers.Unlike most distributed memory systems, we don'tshare virtual memory pages, but rather base thegranularity of our system on logical objects in orderto partially avoid false-sharing [BT91, TB93]. Weexploit here the fact that object boundaries are eas-ily determined at runtime. We also use a consistencyprotocol that reduces the communication overhead.As shown in Figure 1, one of the PEs is dedicatedto act as a sequencer. A portion of the address spaceon each PE is reserved for the shared memory andholds the locally consistent image of that memory.This portion of memory acts pretty much like a localcache. The �gure also illustrates how active objects(threads), and local or shared passive objects caninteract.4.1 Sharing Objects between PEsA shared memory can implement di�erent levels ofconsistency depending on certain trade-o�s. Theconsistency model supported by a shared memorysystem has a direct implication on the volume ofcommunication generated. Strong semantics will im-ply a large cost on communication but less man-agement overhead at runtime. The best consistencymodel for a distributed system depends partly onthe ratio between communication and computationcosts, and partly on the behavior of the applicationthat uses the system.In the context of consistency models for sharedmemories, we need to consider two aspects: the cri-teria, and the implementation. A formal descrip-

tion of the main consistency models can be foundin [RS95] so we will not go too much into details.We consider here two types of consistency criteria:sequential, and causal consistency.� Sequential consistency, illustrated by Figure 2,was introduced by Leslie Lamport and statesthat a distributed system is sequentially consis-tent if there always exists a valid sequential or-der of events which produces the same result ofexecution; every processor sees the same totalorder of events. Most protocols implementingsequential consistency rely on an atomic broad-cast primitive [HT93] for guaranteeing this totalorder.� Causal consistency is a more relaxed consis-tency model than sequential consistency andusually requires less communication. As thename indicates, it relies on the causal depen-dencies that might exist between some events,de�ning a partial order. The criterion requiresthe partial order de�ned by causal dependenciesto be seen identically on every processor, butthe processors can see a di�erent serialization| or linear extension | of this partial order.When the semantics of both consistency modelsare acceptable, the pertinence of choosing one overthe other depends on a trade-o� between commu-nication cost and management overhead. In dis-tributed systems, where the cost of communication isvery important compared to computation, much canbe gained in using a causally consistent protocol andthus reducing the amount of communication. On theother hand, hardware implementation of distributedshared memory for parallel machines bene�t froma better communication environment and can a�ordgenerating more communication if di�cult and time-consuming book-keeping can be avoided. For thesereasons, causal consistency is more interesting in thecase of distributed systems, while sequential consis-tency is often preferred for parallel machines. Inour implementation, we rely on the broadcast facil-ity provided by NIF to implement a release consis-tent protocol which �nds itself between causal andsequential consistency.4.1.1 Release ConsistencyThe release consistency model(RC) [CBZ91], an al-gorithm for building a causally consistent memory,assumes that four di�erent events can occur, as faras the shared memory is concerned:52
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Figure 1: Architecture of the overall system.
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Figure 2: Sequential consistency
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Figure 3: Causal consistency
1. read(A). Read object A from the shared mem-ory.2. write(A). Write object A in the shared memory.3. acquire(l). Wait until the lock l is available andacquire it.4. release(l). Release the lock l.The acquire and release events roughly correspondto synchronization on a lock and delimit a criticalsection. They can be considered as \strong" eventssince they generate inter-process causal dependen-cies. On the other hand, read and write events donot create any dependency in this model. In short,release consistency requires that shared memory up-dates performed by a processor pi become visible ata processor pj , when the next release by pi is seenby pj . The Figure 4 illustrates this. In this �gure,the modi�cation performed by P1 become visible tothe other processors only after the release is per-formed. This is equivalent to say that groups of ac-quire/release have to be sequentially consistent withrespect to each other.It can be seen that a release on a lock and asubsequent acquire on that lock generates a causaldependency2. Therefore, release consistency re-quires that the occurrence of events from the pointof view of each processor are ordered causally. In2release and acquire are similar to a send and a receiverespectively.

that respect, release consistency can be understoodas a causal memory where locks are carrying the no-tion of causality and reads and writes are the eventsto order.4.1.2 Lazy versus eager consistencyWe can consider two families of algorithms imple-menting release consistent shared memories; eagerand lazy release consistency. The basic di�erencebetween these two models is the time at which up-dates are being carried over to other processors.� Eager RC. As shown in Figure 4, the eagerimplementation of release consistency postponethe updates. On a release event, all previousmodi�ed data are directly brought up-to-dateto every other processor. The system just haveto make sure that no other processor will beable to get the lock before it e�ectively sees theupdate. It can be seen that a lot of unnecessarytra�c is generated compared to a purely causalimplementation. Eager release consistency re-quires groups of acquire/release to be sequen-tially consistent with respect to each other.� Lazy RC. On the other hand, the Figure 5 showsa lazy consistent implementation of release con-sistency, where network tra�c can be kept verylow by delaying updates as much as possi-ble [KCZ92, KDCZ94, CBZ95]. Lazy consis-tency relies directly on the de�nition of causal-ity and strives to perform the modi�cations only53
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at the very last moment. Although the networktra�c is considerably reduced, keeping track ofmodi�ed data becomes dearly signi�cant. Inother words, lazy release consistency requiresgroups of acquire/release to be causally consis-tent with respect to each other.In distributed systems like clusters of worksta-tions or even wide-area networks, the tremendouscost of communication makes negligible any extraoverhead due to managing information on updates.For this reason, lazy release consistency is often pre-ferred over the eager implementation in distributedsystems. On the other hand, this is not true for par-allel machines, and if a cheap broadcast primitive isavailable, the eager algorithm is often a better choiceas it involves little management of extra resources.
5 ProtocolSince synchronization plays a central role in the re-lease consistent protocol, it deserves a particular at-tention. We mentioned earlier that synchronizationis achieved by using acquire and release operationson distributed locks. In order to make it clearer, wedistinguish two levels for our locking algorithm:� Per processor arbitration. the usage of a lockis granted to a PE and the notion of thread istotally ignored. As long as a PE owns a lock, itmay deal with it as it sees �t� Per thread arbitration. Arbitration occurs be-tween threads of a single PE, competing for thelock.Our protocol combines these two levels to allowarbitration between threads in the whole system.The protocol has to satisfy the following properties:� Safety. The protocol guarantees that any exe-cution of the protocol is correct. For any execu-tion, there is an equivalent sequential execution.

� Liveness. Any execution of the protocol is guar-anteed to �nish eventually. Any execution thatterminates on a conventional virtual machine(e.g., it does not result in a deadlock) also ter-minates on the parallel virtual machine.� Fairness. At any time, threads have an equalchance to obtain a lock. This property is actu-ally related to liveness, since it ensures no star-vation in the system.5.1 Per processor arbitrationThe sequencer propagates the updates of objectsand manages shared locks by arbitrating their useamongst PEs. As shown on Figure 6, when a PEneeds a lock, it sends an Acquire message to thesequencer and waits until the lock is granted with anOK message. At this point, the PE may continue,enter the critical section and modify objects. These\dirty" objects are tracked down and put into a list.At the end of the critical section, the PE does a re-lease which implies transferring by DMA the \dirty"objects to the sequencer then sending a Releasemessage which contains the identi�er of the lock aswell as the coordinates of the updated objects. Atthis point, the PE can continue its execution whilethe sequencer has to multicast the updated objectsbefore it can grant a right on that lock to the nextrequesting PE.The algorithm is relatively simple since it consistsonly in a sequencer managing a token representingeach lock, and granting it to the PEs which requestit. As a matter of fact, this is the most straightfor-ward solution to the problem of distributed locks,which also means that it is the easiest to implement.This solution has many draw-backs like limited scal-ability but, in our context of broadcast-based mem-ory, there is no point in trying to avoid the bottle-neck of a sequencer if we need one for broadcastinganyway. Therefore, this algorithm seems to be thebest suited to our needs because it �ts very well withthe way we are handling broadcasts.54
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A lock is associated to an object which addressprovides a unique identi�er. The sequencer keepstrack of every locks and to whom it has been granted.When a PE requires a lock, the sequencer grants itright away if it is available or put the request into awaiting-queue associated with each lock. When thelock is released by the PE which owns it, the �rstrequest queuing for the lock is satis�ed and a mes-sage is sent to the corresponding PE. At this point,it should be noted that nested requests for the lockby one PE are not handled speci�cally and mightresult in a deadlock if a second request is issued bythe same PE. This behavior is important in order tosupport the client algorithm presented in the nextsection and illustrated by Figure 7.

5.2 Per Thread ArbitrationSome additional management was needed in order toallow many threads to run on each PE. In order toimprove e�ciency, some special heuristics were used.But, before going too far into details, it is better tosee an example.Three threads running on the same PE and com-peting for the same lock are represented in Figure 7.Thread a asks �rst for the lock and an Acquiremessage is sent to the sequencer. Meanwhile, b alsoasks for the lock and its request is registered locallyto be processed after a's. After a while, the lock isgranted to the PE, which can give it to a then b.On the other hand, c asked for the lock after the PEreceived it and had to issue a new request to the se-quencer in order to prevent starvation of other PEs.It is granted the lock only during the next cycle;once it is relinquished to the sequencer and acquiredagain.As shown in Figure 8, we distinguish periodswhen the lock is granted to the processor. The �rsttime a PE receives the lock delimits the beginning

of a period which ends when the lock is released.The period for which a thread is eligible for a lockdepends on the time when its request was issued.Once a period starts, new requests are not eligiblefor that period, but only for the following one.This mechanism relies on two waiting-queues ofrequests, associated with each lock. Figure 9 showsthat the quick queue | on the right | holds therequests made during the previous period and thatare granted during the current period. The secondqueue keeps requests that need to wait until the nextperiod. Whenever a new period begins, the requestsenqueued in the slow queue are transferred in blockto the quick queue. This ensures that a single threadcan never obtain the a lock twice during the sameperiod. The change of period occurs at line 39 inFigure 10.This protocol has been implemented so that thenumber of messages is kept low while avoiding star-vation problems between PEs. The two local queuesof requests on a lock allow to group accesses to-gether in order to reduce the number of requeststo the sequencer. This reduces the number of mes-sages and particularly makes a di�erence in the caseof a high number of threads and high contention.On the other hand, if the lock is kept whenever alocal request comes, the other PEs risk not havingthe opportunity to acquire it. Hence, in order toachieve a greater fairness, the mechanism using tworequest queues ensures that no thread will ever begranted the lock more than once before it is relin-quished to the sequencer, thereby giving a chanceto other PEs to obtain the lock. Assuming that thenumber of threads running on each PE is �nite, it isguaranteed that the lock will eventually be releasedto the sequencer. Of course, this also assumes thatall critical sections eventually terminate and that nodeadlock occurs. But, since such a program is incor-rect, this issue is irrelevant in this context.55



rel

acq
acq

acq

ok ok ok

rel

pe1

wrA
wrA

ACQ ACQ

OK OK

RELA

seq

a
b
c

time

Figure 7: Local management of shared locks.

pe
ACQ

OK

REL

seq

ACQ

OK

REL

Pt+1

Pt

Pt

new requests

Pt-1

Pt-1

Figure 8: Period in which a lock is granted.

Pt+1 Pt

GrantedRequest Period
change

Figure 9: Request queue associated which each lock.
56



1 variables2 slowQlock  fg; fSlow request queueg3 quickQlock  fg; fQuick request queueg4 ownerlock  ?; fThread that owns the lockg5 dirty  fg; flist of \dirty" objectsg6 requestlock  fg; fList of pending requests. used by the Sequencerg7 procedure acquire (lock)8 if slowQlock is empty then9 send (Acquire; lock) to Sequencer;10 append (self) to slowQlock;11 wait until ownerlock = self ;12 procedure release (lock)13 if quickQlock is not empty then14 ownerlock  removeFirst(quickQlock);15 signal ownerlock;16 else17 foreach obj 2 dirty do18 send (Broadcast;obj) to Sequencer;19 send (Release; lock) to Sequencer;20 cobegin21 k task fTask executed by the sequencerg22 upon reception of (Acquire; lock) from pei :23 if ownerlock = ? then24 ownerlock  pei;25 send (OK; lock) to ownerlock;26 else27 append (pei) to requestlock;28 upon reception of (Release; lock) from pei :29 pre : ownerlock = pei;30 if requestlock is not empty then31 ownerlock  removeFirst(requestlock);32 send (OK; lock) to ownerlock;33 else34 ownerlock  ?;35 upon reception of (Broadcast; obj) from pei :36 DMA broadcast (obj) to all except pei;37 k task fTask executed by the PEsg38 upon reception of (OK; lock) from Sequencer :39 swap (slowQlock; quickQlock);40 ownerlock  removeFirst(quickQlock);41 signal ownerlock;42 coend Figure 10: Managing acquire and release requests with many threads.
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Note that, in order to make it simpler, the algo-rithm presented in Figure 10 do not take the prob-lem of re-entrance into account. This is not di�cultto add this property and out prototype has imple-mented it.
6 ConclusionWhen we started to work on building a parallel ver-sion of the Java virtual machine, the language wasstill considered as little more than a toy by mostpeople, and very few expected how popular it wouldbecome over only a few months. Now, all the ma-jor computer vendors are supporting, in a way oranother, this new technology. Most e�orts seem tobe put on the client side while the issues concerningInternet servers are starting only recently to takeattention.In this paper, we propose to take massively paral-lel machines out of their niche market and use themas extremely powerful Internet servers. This willbe bene�cial to organizations needing very e�cientservers like powerful search engines or services thatneed to handle concurrent requests from many users,like transaction systems. Furthermore, the develop-ments that are being done to provide a suitable en-vironment for business applications written in Javais likely to make massively parallel machines sup-porting this technology, very appealing to banks andother �nancial institutions.The platform independence of Java programsmakes it possible for new machines to bene�t froma wide software base with little development; theywould bene�t from a very comprehensive softwareenvironment right at the start. This might prove avery big advantage for platforms with a small mar-ket like massively parallel machine as they wouldbecome attractive to organizations that need high-end computing in the context of the ever growingInternet.This paper explores the issues in building a par-allel Java virtual machine for massively parallel pro-cessors like NEC Cenju. It focuses on the solution toa key issue: sharing data between threads located ondi�erent processors. We propose an algorithm basedon release consistency that makes full use of the na-tive communication mechanism of Cenju. Althoughour prototype is not portable, the concept can be ap-plied to any massively parallel machine or networkof workstations with a cheap multicast primitive andremote DMA transfer.We believe that such a work opens new horizonsfor research in diverse �elds like compilation for con-

current object-oriented languages, parallel operat-ing systems based on high-level languages, �kernelsbased on programming languages, and many otherareas. This gives an opportunity for these many re-search areas to target new objectives, in the practicalworld.
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