Issues in Building a Parallel Java™ Virtual Machine on Cenju-3/DE

Xavier Défago*

Akihiko Konagaya

Computer System Research Laboratory
C&C System Research Laboratories, NEC Corporation
Miyazakidai, Miyamae-ku, Kanagawa 216, Japan
Email: defago@Ise.epfl.ch, konagaya@csl.cl.nec.co.jp

Abstract

This paper describes how a Java! virtual machine
can use the inherent concurrency of Java programs
on a massively parallel processor machine (MPP)
like NEC Cenju-3. An application written with the
Java programming language has two different ways
to introduce concurrency; threads and processes.
While it is possible to introduce parallelism by us-
ing different processes, the granularity is likely to
be coarse and applications would have to be written
specifically for parallel machines or would lack flex-
ibility, scalability and the level of parallelism would
be very low. On the other hand, while most non-
trivial Java applications are already highly multi-
threaded, the problem of locality of objects shared
between threads makes it difficult to take advan-
tage of the availability of many processors. Since
the availability of multi-threaded applications is go-
ing to be extremely large, there is much to gain in
being able to exploit the concurrency of such appli-
cations. This is what we try to address in this paper
by describing the issues raised in the implementa-
tion of a parallel Java virtual machine for Cenju-3.
This paper illustrates the use of low-level communi-
cations and remote DMA accesses in implementing a
distributed shared memory for the Java virtual ma-
chine.

1 Introduction

The computing world is becoming more and more
focused on the distribution of services over the In-
ternet, and it is widely believed that such a growth
will go on for a few years at the very least. In

*Currently in Laboratoire de Systémes d’Exploitation,
Département d’Informatique, Ecole Polytechnique Fédérale
de Lausanne, Switzerland.

1Java is a trademark of Sun Microsystems, Inc.

50

this context, the Java programming language, intro-
duced by Sun Microsystems in April 1995, tries to
address the issue of programming distributed appli-
cations on the Internet but, so far, the development
has mainly been oriented towards clients while is-
sues concerning servers have been greatly ignored.
With the worldwide success met by the Java tech-
nology and its current and future performance im-
provement, it can be expected that network servers
that are making full use of this technology will begin
to play a very important role in the near future.

With their performance and scalability, massively
parallel machines have a good opportunity to get
into new horizons and play a major role as servers on
the Internet. This direction might become especially
important if, as many people claim, the future will
see billions of independent Internet devices and a
few very powerful servers providing the computing
power and most of the information. Although a little
extreme, this view is quite correct and servers like
AltaVista (http://www.altavista.digital.com/)
seem to prove it.

Enabling a parallel machine to run Java bytecode
aims at solving some of the weakest points of mas-
sively parallel machines. Whenever a new machine is
built, many applications need to be ported to exploit
the new architecture. This is very time consuming
and usually results in applications being available
only after a long period of time. If most of the ap-
plication are available as Java bytecode, the porting
effort is significantly reduced. The increasing avail-
ability of Java applications directly contribute to the
machine. Further, if care is taken over time to opti-
mize the virtual machine, every application running
on top of it directly benefit from this effort.

This paper presents some of the main issues in im-
plementing a Java Virtual Machine for Cenju-3 and
presents an implementation of a distributed mem-

ory suitable for both Cenju-3 and the Java virtual
machine.

The paper is organized as follows: Section 2 gives
some background information on Cenju-3 and con-
currency in the Java programming language. Sec-
tion 3 discusses some of the issues in building a
parallel Java virtual machine. Section 4 shows the
issues in sharing objects and presents some consis-
tency protocols for distributed shared memory. Sec-
tion 5 describes the distributed shared memory for
parallel Java on Cenju-3.

2 Background

2.1 Cenju Network Interface (NIF)

Although Cenju-3 provides communication facilities
with Mach IPC, it also has a native high-speed, low-
latency communication interface called NIF [MKI94]
which we directly used in building our shared ob-
jects system. The functionalities of NIF include fast,
short messages and DMA transfers that can be both
either unicast or multicast. A hardware multicast
which cost is equivalent to the peer-to-peer commu-
nication is very interesting for building an efficient
shared memory system as shown in [TKB94]. But,
two simultaneous multicasts which destination sets
overlap each other may result in a network deadlock.
Hence its use should be restricted to one processor
only. This implies using a sequencer on a PE for
processing multicasts, which has the very nice side-
effect of ensuring a total order of delivery.

2.2 Concurrency in Java

The Java programming language inherently sup-
ports concurrency [Lea97]. As a result, applications
written in this language tend to show a high degree
of concurrency. The language provides a few basic
constructs designed to support concurrent program-
ming:

e Initiate concurrency. In order to create concur-
rency, the language provides the standard class
java.lang.Thread. Each time this class is in-
stantiated, a new thread is generated.

o Mutual exclusion. In order to control the
execution of code and guarantee mutual ex-
clusion, the language provides the keyword
synchronized.

e Synchronization. It is possible to synchro-
nize threads with wait(), notify(), and
notifyAl1() defined in java.lang.Object.

51

Since applications will rely on this, it is important
to know the guarantees made by the specification. A
parallel virtual machine — or any virtual machine
— should at least provide the following guarantees:

e Priority. Although Java supports 10 levels
of priority for its threads, conformance is not
strictly enforced by the specification. As a re-
sult, no assumption based on thread priorities
can be made by Java developers.

e Atomic update. Java guarantees that basic op-
erations (most bytecode instructions) are exe-
cuted atomically. This includes accesses (read
or write) to all built-in scalar types except long
and double.

e Cache issue. Except for variables marked as
volatile, there is no guarantee that assign-
ments performed in one thread will be seen in
another thread.

e Mutual exclusion. A lock is associated with each
object. Code qualified as synchronized begins
by acquiring the lock associated with the object,
executed its code, and releases the lock before
leaving. Mutual exclusion is thus guaranteed
for all piece of code protected by the same lock
(i-e., the same object).

3 A Parallel Java

3.1 Implicit and Explicit Parallelism

At the language level, parallelism can be tackled in
two ways: implicit or explicit. The choice is usu-
ally a trade-off between ease of programming and
performance.

In building a Java VM for a machine like Cenju,
one of the strongest motivation is to benefit from ap-
plications developed for the PC market. This implies
that normal bytecode should execute on the ma-
chine. Applications developed for the Cenju should
also be executable on any other architecture. But, to
maximize performance, we need to optimize aspects
like the placement of thread. The idea is to embed
hints on these matters, through attributes [LY96].

Then, a parallel compiler can generate annotated
bytecode for the parallel virtual machine. These an-
notation give hints to the virtual machine to solve
problems like the placement of threads on each PE.
The same code is executable by any other Java vir-
tual machine since the hint are not understand and
hence ignored.

We advocate a flexible approach that allows both
an implicit and an explicit approach to parallelism.

3.2 Location transparency

In order to exploit the concurrency introduced by
the multi-threaded aspect of applications written in
Java, a thread should be allowed to run on any PE,
without any constraint. This requirement implies
that the virtual machine has to provide location
transparency for threads. So, it makes it possible for
an application to have its threads running on differ-
ent PEs. Sharing objects between two processors is
a key step toward providing location transparency
for threads.

4 Sharing Java Objects

In order to share data between processors, a dis-
tributed shared memory system is needed. We have
built one making use of broadcast DMA transfers.
Unlike most distributed memory systems, we don’t
share virtual memory pages, but rather base the
granularity of our system on logical objects in order
to partially avoid false-sharing [BT91, TB93]. We
exploit here the fact that object boundaries are eas-
ily determined at runtime. We also use a consistency
protocol that reduces the communication overhead.

As shown in Figure 1, one of the PEs is dedicated
to act as a sequencer. A portion of the address space
on each PE is reserved for the shared memory and
holds the locally consistent image of that memory.
This portion of memory acts pretty much like a local
cache. The figure also illustrates how active objects
(threads), and local or shared passive objects can
interact.

4.1 Sharing Objects between PEs

A shared memory can implement different levels of
consistency depending on certain trade-offs. The
consistency model supported by a shared memory
system has a direct implication on the volume of
communication generated. Strong semantics will im-
ply a large cost on communication but less man-
agement overhead at runtime. The best consistency
model for a distributed system depends partly on
the ratio between communication and computation
costs, and partly on the behavior of the application
that uses the system.

In the context of consistency models for shared
memories, we need to consider two aspects: the cri-
teria, and the implementation. A formal descrip-

52

tion of the main consistency models can be found
in [RS95] so we will not go too much into details.
We consider here two types of consistency criteria:
sequential, and causal consistency.

e Sequential consistency, illustrated by Figure 2,
was introduced by Leslie Lamport and states
that a distributed system is sequentially consis-
tent if there always exists a valid sequential or-
der of events which produces the same result of
execution; every processor sees the same total
order of events. Most protocols implementing
sequential consistency rely on an atomic broad-
cast primitive [HT93] for guaranteeing this total
order.

e Causal consistency is a more relaxed consis-
tency model than sequential consistency and
usually requires less communication. As the
name indicates, it relies on the causal depen-
dencies that might exist between some events,
defining a partial order. The criterion requires
the partial order defined by causal dependencies
to be seen identically on every processor, but
the processors can see a different serialization
— or linear extension — of this partial order.

When the semantics of both consistency models
are acceptable, the pertinence of choosing one over
the other depends on a trade-off between commu-
nication cost and management overhead. In dis-
tributed systems, where the cost of communication is
very important compared to computation, much can
be gained in using a causally consistent protocol and
thus reducing the amount of communication. On the
other hand, hardware implementation of distributed
shared memory for parallel machines benefit from
a better communication environment and can afford
generating more communication if difficult and time-
consuming book-keeping can be avoided. For these
reasons, causal consistency is more interesting in the
case of distributed systems, while sequential consis-
tency is often preferred for parallel machines. In
our implementation, we rely on the broadcast facil-
ity provided by NIF to implement a release consis-
tent protocol which finds itself between causal and
sequential consistency.

4.1.1 Release Consistency

The release consistency model(RC) [CBZ91], an al-
gorithm for building a causally consistent memory,
assumes that four different events can occur, as far
as the shared memory is concerned:

shared image

pe2 |

pe3 |

N

Figure 1: Architecture of the overall system.

P A B D E P c_
p1 B C N @ i E > pl 4C @ i D >
P A C D “a > P) .

Figure 2: Sequential consistency

1. read(A). Read object A from the shared mem-
ory.

2. write(A). Write object A in the shared memory.

acquire(l). Wait until the lock ! is available and
acquire it.

4. release(l). Release the lock .

The acquire and release events roughly correspond
to synchronization on a lock and delimit a critical
section. They can be considered as “strong” events
since they generate inter-process causal dependen-
cies. On the other hand, read and write events do
not create any dependency in this model. In short,
release consistency requires that shared memory up-
dates performed by a processor p; become visible at
a processor p;, when the next release by p; is seen
by p;j. The Figure 4 illustrates this. In this figure,
the modification performed by P; become visible to
the other processors only after the release is per-
formed. This is equivalent to say that groups of ac-
quire/release have to be sequentially consistent with
respect to each other.

It can be seen that a release on a lock and a
subsequent acquire on that lock generates a causal
dependency?. Therefore, release consistency re-
quires that the occurrence of events from the point
of view of each processor are ordered causally. In

2release and acquire are similar to a send and a receive
respectively.

53

Figure 3: Causal consistency

that respect, release consistency can be understood
as a causal memory where locks are carrying the no-
tion of causality and reads and writes are the events
to order.

4.1.2 Lazy versus eager consistency

We can consider two families of algorithms imple-
menting release consistent shared memories; eager
and lazy release consistency. The basic difference
between these two models is the time at which up-
dates are being carried over to other processors.

e FEager RC. As shown in Figure 4, the eager
implementation of release consistency postpone
the updates. On a release event, all previous
modified data are directly brought up-to-date
to every other processor. The system just have
to make sure that no other processor will be
able to get the lock before it effectively sees the
update. It can be seen that a lot of unnecessary
traffic is generated compared to a purely causal
implementation. Eager release consistency re-
quires groups of acquire/release to be sequen-
tially consistent with respect to each other.

e Lazy RC. On the other hand, the Figure 5 shows
a lazy consistent implementation of release con-
sistency, where network traffic can be kept very
low by delaying updates as much as possi-
ble [KCZ92, KDCZ94, CBZ95]. Lazy consis-
tency relies directly on the definition of causal-
ity and strives to perform the modifications only

Wga rd Wga rd
1——=% ¥ 1 > A—— >
W, acq Wa rel” ~.acq Wa re
PZ “-‘(1 1 n: '.‘ > P2 i 1 l\ >
P3 l‘.“ 4 a?q L a ' ?’ > P\?) "a‘cl:q L a r? >
P, 3 1 g 2 > P & >

Figure 4: Message traffic with eager RC.

at the very last moment. Although the network
traffic is considerably reduced, keeping track of
modified data becomes dearly significant. In
other words, lazy release consistency requires
groups of acquire/release to be causally consis-
tent with respect to each other.

In distributed systems like clusters of worksta-
tions or even wide-area networks, the tremendous
cost of communication makes negligible any extra
overhead due to managing information on updates.
For this reason, lazy release consistency is often pre-
ferred over the eager implementation in distributed
systems. On the other hand, this is not true for par-
allel machines, and if a cheap broadcast primitive is
available, the eager algorithm is often a better choice
as it involves little management of extra resources.

5 Protocol

Since synchronization plays a central role in the re-
lease consistent protocol, it deserves a particular at-
tention. We mentioned earlier that synchronization
is achieved by using acquire and release operations
on distributed locks. In order to make it clearer, we
distinguish two levels for our locking algorithm:

e Per processor arbitration. the usage of a lock
is granted to a PE and the notion of thread is
totally ignored. As long as a PE owns a lock, it
may deal with it as it sees fit

e Per thread arbitration. Arbitration occurs be-
tween threads of a single PE, competing for the
lock.

Our protocol combines these two levels to allow
arbitration between threads in the whole system.
The protocol has to satisfy the following properties:

e Safety. The protocol guarantees that any exe-
cution of the protocol is correct. For any execu-
tion, there is an equivalent sequential execution.

54

Figure 5: Message traffic with lazy RC.

e Liveness. Any execution of the protocol is guar-
anteed to finish eventually. Any execution that
terminates on a conventional virtual machine
(e.g., it does not result in a deadlock) also ter-
minates on the parallel virtual machine.

e Fairness. At any time, threads have an equal
chance to obtain a lock. This property is actu-
ally related to liveness, since it ensures no star-
vation in the system.

5.1 Per processor arbitration

The sequencer propagates the updates of objects
and manages shared locks by arbitrating their use
amongst PEs. As shown on Figure 6, when a PE
needs a lock, it sends an ACQUIRE message to the
sequencer and waits until the lock is granted with an
OK message. At this point, the PE may continue,
enter the critical section and modify objects. These
“dirty” objects are tracked down and put into a list.
At the end of the critical section, the PE does a re-
lease which implies transferring by DMA the “dirty”
objects to the sequencer then sending a RELEASE
message which contains the identifier of the lock as
well as the coordinates of the updated objects. At
this point, the PE can continue its execution while
the sequencer has to multicast the updated objects
before it can grant a right on that lock to the next
requesting PE.

The algorithm is relatively simple since it consists
only in a sequencer managing a token representing
each lock, and granting it to the PEs which request
it. As a matter of fact, this is the most straightfor-
ward solution to the problem of distributed locks,
which also means that it is the easiest to implement.
This solution has many draw-backs like limited scal-
ability but, in our context of broadcast-based mem-
ory, there is no point in trying to avoid the bottle-
neck of a sequencer if we need one for broadcasting
anyway. Therefore, this algorithm seems to be the
best suited to our needs because it fits very well with
the way we are handling broadcasts.

wrA wiB A B REL

Figure 6: Global locks granting mechanism.

A lock is associated to an object which address
provides a unique identifier. The sequencer keeps
track of every locks and to whom it has been granted.
When a PE requires a lock, the sequencer grants it
right away if it is available or put the request into a
waiting-queue associated with each lock. When the
lock is released by the PE which owns it, the first
request queuing for the lock is satisfied and a mes-
sage is sent to the corresponding PE. At this point,
it should be noted that nested requests for the lock
by one PE are not handled specifically and might
result in a deadlock if a second request is issued by
the same PE. This behavior is important in order to
support the client algorithm presented in the next
section and illustrated by Figure 7.

5.2 Per Thread Arbitration

Some additional management was needed in order to
allow many threads to run on each PE. In order to
improve efficiency, some special heuristics were used.
But, before going too far into details, it is better to
see an example.

Three threads running on the same PE and com-
peting for the same lock are represented in Figure 7.
Thread a asks first for the lock and an ACQUIRE
message is sent to the sequencer. Meanwhile, b also
asks for the lock and its request is registered locally
to be processed after a’s. After a while, the lock is
granted to the PE, which can give it to a then b.
On the other hand, c asked for the lock after the PE
received it and had to issue a new request to the se-
quencer in order to prevent starvation of other PEs.
It is granted the lock only during the next cycle;
once it is relinquished to the sequencer and acquired
again.

As shown in Figure 8, we distinguish periods
when the lock is granted to the processor. The first
time a PE receives the lock delimits the beginning

55

of a period which ends when the lock is released.
The period for which a thread is eligible for a lock
depends on the time when its request was issued.
Once a period starts, new requests are not eligible
for that period, but only for the following one.

This mechanism relies on two waiting-queues of
requests, associated with each lock. Figure 9 shows
that the quick queue — on the right — holds the
requests made during the previous period and that
are granted during the current period. The second
queue keeps requests that need to wait until the next
period. Whenever a new period begins, the requests
enqueued in the slow queue are transferred in block
to the quick queue. This ensures that a single thread
can never obtain the a lock twice during the same
period. The change of period occurs at line 39 in
Figure 10.

This protocol has been implemented so that the
number of messages is kept low while avoiding star-
vation problems between PEs. The two local queues
of requests on a lock allow to group accesses to-
gether in order to reduce the number of requests
to the sequencer. This reduces the number of mes-
sages and particularly makes a difference in the case
of a high number of threads and high contention.
On the other hand, if the lock is kept whenever a
local request comes, the other PEs risk not having
the opportunity to acquire it. Hence, in order to
achieve a greater fairness, the mechanism using two
request queues ensures that no thread will ever be
granted the lock more than once before it is relin-
quished to the sequencer, thereby giving a chance
to other PEs to obtain the lock. Assuming that the
number of threads running on each PE is finite, it is
guaranteed that the lock will eventually be released
to the sequencer. Of course, this also assumes that
all critical sections eventually terminate and that no
deadlock occurs. But, since such a program is incor-
rect, this issue is irrelevant in this context.

Figure 7: Local management of shared locks.

Seq OK OK
ACQ REL ACQ REL
new requests
Pt-1 | Pt Pt+1

Figure 8: Period in which a lock is granted.

Ptr1 Pt

Request Period Granted
——>

change

Figure 9: Request queue associated which each lock.

56

1 variables

2 slowQock — {}; {Slow request queue}
8 quickQiock — {}; {Quick request queue}
4 owneryoer — L {Thread that owns the lock}
5 dirty + {} {list of “dirty” objects}
6 requestioer — {}; {List of pending requests. used by the Sequencer}

7 procedure acquire (lock)

8 if slowQiocr is empty then

9 send (ACQUIRE, lock) to Sequencer;
10 append (self) to slowQiock;

11 wait until owner;,. = self;

12 procedure release (lock)
18 if quickQiock is not empty then

14 owneryocx < removeFirst(quickQiock);
15 signal owneryock;

16 else

17 foreach obj € dirty do

18 send (BROADCAST,0bj) to Sequencer;
19 send (RELEASE, lock) to Sequencer;

20 cobegin

21 | task {Task executed by the sequencer}
22 upon reception of (ACQUIRE,lock) from pe; :
23 if owner;ocr = L then

24 OWNET|ock < PEi;

25 send (OK,lock) to ownerjock;

26 else

27 append (pe;) to requestiock;

28 upon reception of (RELEASE, lock) from pe; :
29 PT€ : OWNeTock = PE;;

30 if request;,cr, is not empty then

31 owneryck < removeFirst(requestioer);
32 send (OK, lock) to ownerjock;

33 else

34 owNnerper < L;

85 upon reception of (BROADCAST, obj) from pe; :
36 DMA _broadcast (obj) to all except pe;;

37 || task {Task executed by the PEs}
38 upon reception of (OK,lock) from Sequencer :

39 swap (Sloleock7 QUiCleock);

40 owneryock < removeFirst(quickQiock);

41 signal owneryock;

42 coend

Figure 10: Managing acquire and release requests with many threads.

57

Note that, in order to make it simpler, the algo-
rithm presented in Figure 10 do not take the prob-
lem of re-entrance into account. This is not difficult
to add this property and out prototype has imple-
mented it.

6 Conclusion

When we started to work on building a parallel ver-
sion of the Java virtual machine, the language was
still considered as little more than a toy by most
people, and very few expected how popular it would
become over only a few months. Now, all the ma-
jor computer vendors are supporting, in a way or
another, this new technology. Most efforts seem to
be put on the client side while the issues concerning
Internet servers are starting only recently to take
attention.

In this paper, we propose to take massively paral-
lel machines out of their niche market and use them
as extremely powerful Internet servers. This will
be beneficial to organizations needing very efficient
servers like powerful search engines or services that
need to handle concurrent requests from many users,
like transaction systems. Furthermore, the develop-
ments that are being done to provide a suitable en-
vironment for business applications written in Java
is likely to make massively parallel machines sup-
porting this technology, very appealing to banks and
other financial institutions.

The platform independence of Java programs
makes it possible for new machines to benefit from
a wide software base with little development; they
would benefit from a very comprehensive software
environment right at the start. This might prove a
very big advantage for platforms with a small mar-
ket like massively parallel machine as they would
become attractive to organizations that need high-
end computing in the context of the ever growing
Internet.

This paper explores the issues in building a par-
allel Java virtual machine for massively parallel pro-
cessors like NEC Cenju. It focuses on the solution to
a key issue: sharing data between threads located on
different processors. We propose an algorithm based
on release consistency that makes full use of the na-
tive communication mechanism of Cenju. Although
our prototype is not portable, the concept can be ap-
plied to any massively parallel machine or network
of workstations with a cheap multicast primitive and
remote DMA transfer.

We believe that such a work opens new horizons
for research in diverse fields like compilation for con-

58

current object-oriented languages, parallel operat-
ing systems based on high-level languages, pkernels
based on programming languages, and many other
areas. This gives an opportunity for these many re-
search areas to target new objectives, in the practical
world.

7 Acknowledgments

We would like to thank Hiroyuki Araki, Koichi Kon-
ishi, Tomoyoshi Sugawara, and Kosuke Tatsukawa
for their support. We would like to thank Christo-
pher Howson for his valuable comments along this
project and his help in understanding the Cenju Net-
work interface.

References

H. E. Bal and A. S. Tanenbaum.
Distributed Programming with Shared
Data. Computer Languages, 16(2):129-

[BT91]

146, 1991.

[CBZ91] J. B. Carter, J. K. Bennett, and
W. Zwaenepoel. Implementation and
Performance of Munin. In Proc. of the
18th ACM Symp. on Operating Systems
Principles (SOSP’91), pages 152-164,
October 1991.

[CBZ95] J. B. Carter, J. K. Bennett, and
W. Zwaenepoel. Techniques for Reduc-
ing Consistency-Related Communication
in Distributed Shared Memory Systems.
ACM Transactions on Computer Sys-
tems, 13(3):205-243, August 1995.

[GJS96] J. Gosling, B. Joy, and G. Steele. The
Java Language Specification. The Java
Series. Addison-Wesley Publishers Ltd.,
August 1996.

[HT93] V. Hadzilacos and S. Toueg. Fault-
Tolerant Broadcasts and Related Prob-
lems. In Sape Mullender, editor, Dis-
tributed Systems, pages 97-145. ACM
Press, 1993.

[KCZ92] P Kele-

her, A. L. Cox, and W. Zwaenepoel.
Lazy Release Consistency for Software
Distributed Shared Memory. In Proc.
of the 18th Annual Int’l Symp. on Com-
puter Architecture (ISCA’92), pages 13—
21, May 1992.

[KDCZ94] P.Keleher, S. Dwarkadas, A. L. Cox, and

[Lea97]

[LY96]

[MKI94]

[RS95]

[TB93)]

[TKB94]

W. Zwaenepoel. Treadmarks: Dis-
tributed Shared Memory on Standard
Workstations and Operating Systems. In
Proc. of the Winter 1994 USENIX Con-
ference, pages 115-131, January 1994.

D. Lea. Concurrent Programming in
Java. The Java Series. Addison-Wesley
Publishers Ltd., January 1997.

T. Lindholm and F. Yellin. The Java
Virtual Machine Specification. The Java
Series. Addison-Wesley Publishers Ltd.,
September 1996.

T. Maruyama, Y. Kanoh, and Y. Ina-
mura. Cenju-3 interconnection network
interface. Technical report, Computer
System Lab., NEC Corporation, Febru-
ary 1994. translated in English by C.
Howson.

M. Raynal and A. Schiper. From Causal
Consistency to Sequential Consistency in
Shared Memory Systems. In Founda-
tions of Software Technology and The-
oretical Computer Science, 15th Conf.,
pages 180-194. Springer Verlag, LNCS
1026, December 1995.

A. S. Tanenbaum and H. E. Bal. Pro-
gramming a Distributed System Using
Shared Objects. In Proc. of the Second
IEEE Int’l Symp. on High Performance
Distributed Computing, pages 5-12, July
1993.

A. S. Tanenbaum, M. F. Kaashoek,
and H. E. Bal. Using Broadcasting
to Implement Distributed Shared Mem-
ory Efficiently,. In T. L. Casavant
and M. Singhal, editors, Readings in
Distributed Computing Systems, pages
387-408. IEEE Computer Society Press,
1994.

59

