
Optimization Techniques for Replicating CORBA Objects�

Xavier Défago Pascal Felbery André Schiper
defago@lse.epfl.ch pfelber@us.oracle.com schiper@lse.epfl.ch

Laboratoire de Systèmes d’Exploitation
École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

The CORBA Object Group Service (OGS) is a new
CORBA service that provides support for fault-tolerance
through the replication of CORBA objects.

In this paper, we present several optimization tech-
niques that are used to improve the performance of
OGS. For each optimization, we analyse the impact on
the throughput and the response time of OGS.

The optimization techniques presented in this paper
are quite generic and can be applied to many fault-
tolerant distributed algorithms based on consensus.

1. Introduction

Distributed computing is one of the major trends in
the computer industry. To answer the growing demand
in distributed technologies, several middleware environ-
ments (e.g., RPC, CORBA, DCOM) have emerged dur-
ing the last few years that greatly simplify the devel-
opment of distributed applications and systems. The
Common Object Request Broker Architecture [14], also
known as CORBA, is currently a popular environment
for developing distributed applications and systems.
CORBA is a standard implemented by different vendors.
As its basic abstraction, CORBA provides the notion of
distributed objects.

The growing popularity of distributed computing
rises new kinds of concerns such as the dependability.
A typical dependability problem is the availability of a
service. This availability can be significantly reduced
if the service is vulnerable to the failure of some of its
parts. Ironically, while distribution is a factor that makes
distributed applications more vulnerable, it can also be
used to make them more reliable than their individual
parts.

�Research supported by OFES under contract number 96.0454, as
part of the ESPRIT Project OpenDREAMS-II (number 25262).

yCurrently affiliated to Oracle Corp., Portland, Oregon.

Redundancy is a commonly used technique to make
a system more reliable than its components. To sup-
port the development of reliable services, specialized
middleware environments (e.g., Isis [2], Horus [16],
Totem [13], Transis [1], Consul [12], Phoenix [10]) have
been developed. These environments greatly reduce the
complexity of building reliable distributed systems by
providing all the necessary support for replicating ser-
vices.

Despite its convenience and popularity, CORBA still
does not provide enough support for dependable sys-
tems. To overcome this lack of support, we have de-
veloped a CORBA service that addresses the depend-
ability requirements of distributed applications [5, 6].
This work was done in the context of the European ES-
PRIT projects OpenDREAMS and OpenDREAMS-II,
which aim at providing an open, distributed, reliable
framework for supervision and control systems. Our
service uses replication techniques to make CORBA ob-
jects fault-tolerant and highly available.

In this paper, we discuss several optimization tech-
niques to improve the performance of the replication
service. The optimizations presented in this paper are
algorithm-based and, as such, quite generic. We anal-
yse the impact of each independent optimization on the
throughput and the response time of our replication pro-
tocol.

The rest of this paper is structured as follows. Sec-
tion 2 presents background concepts about CORBA, ob-
ject replication, and group communication protocols.
Section 3 details the techniques that we have used to
measure the performance of our replication service.
Section 4 describes the optimization techniques that we
have used to optimize the failure-free case. Section 5
describes two important extensions that allow a signif-
icantly better reaction to failures. Finally, Section 6
presents some concluding remarks.

c1999, IEEE Computer Society Press. Appeared in Proceedings of the 4th International Workshop on Object-oriented Real-time Dependable
Systems (WORDS’99).

2. Background

2.1. Distributed Objects and CORBA

The Object Management Architecture (OMA) [14],
specified by the Object Management Group (OMG), is a
conceptual infrastructure for building portable and inter-
operable software components, based on open and stan-
dardized interfaces.

Commercially known as CORBA, the Object Re-
quest Broker (ORB) is the communication core of the
OMA. The ORB enables objects to transparently invoke
remote operations in a distributed environment. The
ORB also provides the environment for managing ob-
jects, advertising their existence, and describing their
metadata. Clients use object references to identify re-
mote objects and to invoke their operations.

The Object Services are a collection of interfaces
and objects supporting basic functionalities useful for
most CORBA applications. A CORBA service is ba-
sically a set of CORBA objects. These objects can be
invoked through the ORB by any CORBA client. Ser-
vices are not related to any specific application but are
basic building blocks, usually provided by CORBA en-
vironments. Several services have been designed and
adopted as standards by the OMG.

2.2. The Object Group Service

Neither the ORB nor the existing services provide yet
the necessary tools for building highly available applica-
tions. This can be considered a major limitation for the
use of CORBA in many of today’s applications such as
finance, process control and telecommunications.

To overcome this limitation, we have developed an
Object Group Service (OGS) that provides the ability
to group CORBA objects and invoke them as a single
fault-tolerant entity [6]. Group invocation can be per-
formed with various properties, such as atomicity and
total order. Atomicity ensures that either all non-crashed
members of a group receive an invocation or none of
them does. The total order ensures that all members of a
group receive invocations in the same order. The group
paradigm has proved to be very useful in supporting
highly available applications through replication. The
replicas of an object are gathered inside a group. Thanks
to the atomicity and total order properties, invocations
made to the group hide the replication by ensuring that
all replicas behave as a single copy. OGS was designed
as a new CORBA service that complements the collec-
tion of CORBA services such as the Object Transaction
Service, the Object Persistence Service, the Event Ser-
vice, and the Life Cycle Service.

The service approach taken by OGS stands in con-
trast with other attempts at providing support for fault-
tolerance in CORBA. In Orbix+Isis ([8]) and Elec-
tra ([9]) the group communication platform is integrated
into the ORB. In Eternal/Realize ([11]), invocations are
intercepted and passed over to the group communication
platform.

2.3. The Consensus Problem

The consensus problem is a central problem in the
context of distributed systems. More specifically, this
problem is central for the support of replicating objects
in OGS: consensus is used to implement total order [3]
and to solve the group membership problem.

p1 (coord.)

p2

p3

p4

p5

 ack estimate propose

 phase 1 phase 3

 phase 2 phase 4

 decide

Figure 1. Consensus algorithm when no
failure occurs. (n = 5 processes)

The consensus problem is defined on a set � of pro-
cesses. Every process pi 2 � starts with an initial value
vi, and all correct processes must agree on a common
value v that is the initial value of one of the processes.
OGS relies on the consensus algorithm using the failure
detector 3S, proposed by Chandra and Toueg [3]. The
algorithm is based on the rotating coordinator paradigm.
In each round, one of the processes is the coordinator.
Figure 1 depicts the communication schema of the al-
gorithm when no failure occurs. On the figure, a gray
rectangle represents the time when a process decides.
More details on the algorithm can be found in [3].

3. Performance of OGS

3.1. System Configuration

We have performed our measurements with the C++
version of OGS, compiled with VisiBroker 3.2. The
testing took place on a local 10 Mbit Ethernet net-
work, interconnecting 13 Sun SPARCstations running
Solaris 2.5.1 or 2.6. The test were carried under normal
load conditions. Among these workstations, there were

four Sun UltraSPARC 30 (250 Mhz processor, 128 MB
of RAM), and nine Sun UltraSPARC 1 (170 Mhz pro-
cessor, 64 MB of RAM). All the client and server appli-
cations were located on different hosts.

3.2. Test Scenarios

For each optimization, we have measured the aver-
age response time as seen by a client, and the maximal
throughput that the replicated service can handle. All
measures have been made with the assumption that no
failure occurs. We have evaluated the gain in perfor-
mance of each optimization by comparing with the re-
sults obtained without optimization.

The response time is the time elapsed between the
emission of a request by a client and the reception of the
corresponding reply. The average response time of the
service is measured in the following manner: a single
client issues a fixed number of totally ordered invoca-
tions (typically 100). The client serializes the invoca-
tions by waiting for the reply from its request before
issuing the next request. The total time is divided by
the number of invocations issued, to obtain the average
response time of a single invocation.

The maximal throughput is the number of requests
that OGS can totally order in a fixed period of time.
The maximal throughput was measured in the following
way: many clients1 issue totally ordered invocations to
the service. Since there are many clients, many invoca-
tions are performed concurrently. The number of clients
is increased until the service has reached its maximal
throughput. Unlike the measures of the response time,
the throughput of OGS benefits from the ability of the
total order algorithm to order several requests in a sin-
gle execution of the consensus algorithm.

The measures have been made with different group
sizes; the tests have involved 3, 5, and then 7 replicas.
For all measures, the client waits for a single reply from
the service.

3.3. Reference measures

To provide a base for comparison, we have first mea-
sured OGS without any optimization. The results that
we have obtained are illustrated in Table 1.

4. Improving Performance

In this section, we present three optimizations to
the consensus algorithm that help improve the response

1For the convenience of tests, there is only one client process that
holds many client threads. Since the client part of the ORB becomes
a bottleneck, the results obtained for the throughput are probably
underestimated.

resp. time [ms] thput [msg/s]
n = 3 5 7 3 5 7

no opt. 14.9 27.0 49.2 190 110 69

Table 1. Reference measures.

time of the service. The first optimization aims at re-
ducing the network congestion by reducing the number
of messages generated by the consensus algorithm. The
second optimization consists in removing one phase of
the algorithm and thus reduces the number of communi-
cation steps of the algorithm. The last optimization ap-
plies to the common case where there are exactly three
replicas.

4.1. Optimization 1: Reducing network conges-
tion

In the original consensus algorithm, as presented by
Chandra and Toueg, the processes proceed to the next
round directly after they have send an acknowledgement
(ack or nack) to the coordinator. In the case where no
failure occur, proceeding directly to the next round gen-
erates many unnecessary messages. The messages sent
on behalf of round 2 are represented in gray on Figure 2.

 decide

 ack estimate

p1 (coord.)

p2

p3

p4

 propose

 estimate

 propose

Figure 2. Optimization 1: reducing net-
work congestion.

To circumvent this problem, we modify the algorithm
so that the participants proceed to the next round only af-
ter some delay d, or earlier if they suspect the coordina-
tor. The value of d is chosen such that it is greater than
the usual round-trip time. The delay d should ensure
that there is a high probability for the decision message
to arrive before any participant has a chance to proceed
to the next round.

With this modification, the algorithm generates fewer
messages. As a result, the performance of the consen-
sus algorithm is improved in the common case where no
crash occur. Our observations have shown that the num-
ber of messages generated by n replicas can be reduced

by as much as 2 � n� 3 messages.
It is important to note that this optimization may de-

lay the decision of the consensus in the case of an actual
crash of the coordinator. This is however not a problem
since this cost is rendered negligible by the optimization
presented in Section 5.

resp. time [ms] thput [msg/s]
n = 3 5 7 3 5 7

no opt. 14.9 27.0 49.2 190 110 69
opt. 1 13.8 25.0 42.9 201 113 75

Table 2. Performance measurements for
optimization 1

As mentioned earlier, optimization 1 significantly re-
duces the number of messages generated by the algo-
rithm. Although these messages do not lie on the critical
path, they load the network and the processes unneces-
sarily. As shown in Table 2, these messages account to
about 10% of the overhead for the response time, and
around 5% for the throughput (see also Fig. 5).

4.2. Optimization 2: Removing one phase

As explained in [15], in the first round of the consen-
sus algorithm, the coordinator does not need to receive
the estimates of the other processes and can just start by
proposing its own initial value. In other words, if the co-
ordinator of the first round tries to impose its own value,
it is possible to remove one communication step to the
algorithm.

 decide

 ack estimate

p1 (coord.)

p2

p3

p4

 propose

Figure 3. Optimization 2: removing the
first phase of the first round.

The second optimization that we introduce consists
in having all processes start the consensus in the second
phase of the first round. As a result of this optimization,
the consensus takes only three communication steps in-
stead of four, and generates fewer messages. This opti-
mization is illustrated in Figure 3.

resp. time [ms] thput [msg/s]
n = 3 5 7 3 5 7

no opt. 14.9 27.0 49.2 190 110 69
opt. 2 10.9 21.8 42.0 208 117 78

opt. 1+2 10.0 19.5 39.7 213 123 80

Table 3. Performance measurements for
optimization 2.

Optimization 2 reduces the number of messages to
a lesser extend than optimization 1 (n � 1 messages).
However, it also reduces the number of communication
steps. The measures illustrated in Table 3 show that
the ability to reduce the number of steps has a signifi-
cant impact on both the response time and the through-
put. Besides, since optimization 1 and optimization 2
are independent, the combination of the two optimiza-
tions accounts for as much as 33% improvement for the
response time and 12% for the throughput.

4.3. Optimization 3: Specializing for 3 replicas

The optimization presented in this section is special-
ized for the case of three replicas. In this case, the sys-
tem tolerates the crash of one replica. We believe that
optimizing this case is worthwhile since it is commonly
encountered in practice. The optimization is introduced
in OGS by testing the size of the group before starting a
consensus algorithm.

 estimate

p1 (coord.)

p2

p3

 propose

 decide & ack

Figure 4. Optimization 3: specializing for
3 replicas.

This optimization is based on the observation that
two processes form a majority in a group of three pro-
cesses. In the context of the consensus, a process that ac-
cepts the proposition made by the coordinator (phase 3)
already knows that the proposed value will be the deci-
sion value. Indeed, the process and the coordinator al-
ready form a majority together. As a result, the process
is in a position where it can decide. This optimization is
illustrated in Figure 4 where p2 and p3 decide as soon as
they receive the proposition from the coordinator p1.

resp. time [ms] thput [msg/s]
no opt. 14.9 190
opt. 3 12.4 208

opt. 1+2+3 9.8 224

Table 4. Performance measurements for
optimization 3 (n = 3).

The measures concerning optimization 3 have been
performed for the case of three replicas. This optimiza-
tion reduces the number of communication steps as seen
by the client, but does not really reduce the number of
messages. As illustrated in Table 4, optimization 3 gives
much better results than optimization 1, but lower re-
sults than optimization 2. The combination of the three
optimizations gives very good results. It is however in-
teresting to note that optimization 1 has little impact in
this context since the participants decide before the co-
ordinator.

The improvement obtained by each of the optimiza-
tions are illustrated in Figure 5. The gain obtained for
the throughput amounts to as much as 18%, as illus-
trated in Figure 5(a). But, Figure 5(b) shows that the
improvement of the response time is even more impres-
sive, since it amounts to as much as 34% of the general
algorithm.

5. Improving Reaction to Failures

The optimizations presented in the previous section
aim at improving the response time in the case where no
failure occur. In this section, we present a modification
that dramatically reduces the time needed to react to the
crash of a replica. The concepts on which this modifi-
cation is based were first presented in [4]. It has been
implemented successfully in the context of OGS.

5.1. Two time-out group membership

A slow reaction to failure is a common problem
of group communication platforms (e.g., Isis [2], Ho-
rus [2, 16], Consul [12], Transis [1], Phoenix [10]) for
asynchronous systems. In such platforms, the failure
detection mechanism is based on a time-out to detect
processes’ crash. The purpose of the time-out is (1) to
define the membership of the groups, and (2) to ensure
that the algorithms (e.g, the replication algorithm) do
not wait for a message from a crashed process.

As illustrated on Figure 6, the choice of an adequate
value for this time-out leads to the following trade-off.

Replication Algorithm

Group Membership

group
composition

failure
detection failure

detection Single
Time-out

Figure 6. One time-out approach.

A large value causes long black-out periods of the repli-
cation algorithm, in the case of a crash. On the other
hand, a small time-out value increases the probability
of incorrectly removing a correct replica. Due to the
prohibitive cost of an incorrect removal (the replica will
have to rejoin the group), a large value is usually pre-
ferred, typically in the order of a few minutes. However,
a black-out period in the order of a minute is often un-
acceptable, especially for time-critical applications [7].

Replication Algorithm

Group Membership

group
composition

failure
detection

failure
detection

Aggressive
time-out

Conservative
time-out

Figure 7. Two time-out approach.

The solution for the next version of OGS makes use
of two time-out values in order to overcome the trade-
off. This concept is illustrated in Figure 7. An aggres-
sive value is used by the replication algorithm to react
quickly to failures. This value is typically in the order
of 50 ms on a LAN (local area network). The group
membership relies on a second time-out value that is
large enough to avoid the problem of incorrectly remov-
ing correct replicas. In OGS, this conservative time-out
value is in the order of 10 minutes.

Due to the difficulty of measuring the performance in
the case of a crash, we do not give figures for this case.
The difficulty stems from the large difference that exists
between different runs with one crash. Indeed, if a pro-
cess different from the coordinator crashes, the response
time is not different from the failure-free case. On the
other hand, if the coordinator crashes before it can send
its proposition, the response time is much larger.

In the latter case, the response time is extended by
the duration of an extra round and by the time needed
to detect the crash. Let us take an example and assume
that one round of the consensus algorithm takes about

6%

3%

8%9%

6%

12
%

12
%

11
% 16

%

9%
18

%

0%

5%

10%

15%

20%

25%

30%

35%

40%

3 5 7
Number of replicas

Im
p

ro
ve

m
en

t
[%

]

(a) Throughput.

7% 8%

13
%

27
%

19
%

15
%

33
%

28
%

19
%

17
%

34
%

0%

5%

10%

15%

20%

25%

30%

35%

40%

3 5 7
Number of replicas

Opt. 1
Opt. 2
Opt. 1+2
Opt. 3
Opt. 1+2+3

(b) Response time.

Figure 5. Improvement over the standard algorithm.

15 ms (see Table 1), and that the time-out value is 60 sec.
The response time if the coordinator crashes is mostly
defined by the time needed to detect the crash; a little
more than 60 sec. Let us now assume that the time-
out value is 50 ms. In other words, the time-out value
is in the same order of magnitude than the time needed
to finish one round of the consensus. As a result, the
duration of a round becomes also determinant and the
response time to expect is around 80 ms. The gain in
performance in such a case is three orders of magnitude.

6. Conclusion

In this paper, we have presented four optimization
techniques that make it possible to improve the response
time of replicated invocations in the context of OGS.
These optimizations are applicable in the context of
group communication services based on the consensus.

Three of the optimization techniques aim at improv-
ing the case where no failure occur. We have shown that
a combination of these three techniques makes it possi-
ble to reduce the average response time of the system by
more than one third, and to increase the throughput by
almost 20%.

The two time-out group membership significantly
improves the reaction to failures. By decoupling the
problem of failure detection from the membership ser-
vice, we improve the reaction to failures by as much as
three orders of magnitude. This, of course, has a sig-

nificant impact on the response time in the event of a
crash.

Despite the strong improvement that we have been
able to obtain, we believe that there is still room for op-
timizations and we are still investigating this issue.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Tran-
sis: a communication sub-system for high availability.
In Proceedings of the 22nd International Symposium
on Fault-Tolerant Computing (FTCS-22), Boston, MA,
USA, July 1992.

[2] K. Birman and R. van Renesse. Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Society
Press, 1993.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225–267,
1996.

[4] X. Défago, A. Schiper, and N. Sergent. Semi-passive
replication. In Proceedings of the 17th IEEE Symposium
on Reliable Distributed Systems (SRDS), pages 43–50,
West Lafayette, IN, USA, Oct. 1998.

[5] P. Felber. The CORBA Object Group Service: A Ser-
vice Approach to Object Groups in CORBA. PhD the-
sis, École Polytechnique Fédérale de Lausanne, Switzer-
land, 1998. Number 1867.

[6] P. Felber, R. Guerraoui, and A. Schiper. The implemen-
tation of a CORBA object group service. Theory and
Practice of Object Systems, 4(2):93–105, 1998.

[7] R. Guerraoui and A. Schiper. Consensus: the big mis-
understanding. In Proceedings of the 6th IEEE Com-

puter Society Workshop on Future Trends in Distributed
Computing Systems (FTDCS-6), pages 183–188, Tunis,
Tunisia, Oct. 1997. IEEE Computer Society Press.

[8] IONA and Isis. An Introduction to Orbix+Isis. IONA
Technologies Ltd. and Isis Distributed Systems, Inc.,
1994.

[9] S. Maffeis. Run-Time Support for Object-Oriented Dis-
tributed Programming. PhD thesis, University of Zurich
(Switzerland), Feb. 1995.

[10] C. P. Malloth. Conception and Implementation of a
Toolkit for Building Fault-Tolerant Distributed Appli-
cations in Large Scale Networks. PhD thesis, École
Polytechnique Fédérale de Lausanne, Switzerland, Sept.
1996.

[11] P. M. Melliar-Smith, L. E. Moser, V. Kalogeraki, and
P. Narasimhan. The Realize middleware for replication
and resource management. In N. Davies, K. Raymond,
and J. Seitz, editors, Middleware’98: IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processing, pages 123–138, The Lake Dis-
trict, UK, Sept. 1998. Springer-Verlag.

[12] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul:
A communication substrate for fault-tolerant distributed
programs. Distributed Systems Engineering Journal,
1(2):87–103, 1993.

[13] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, C. A. Lingley-Papadopoulis, and T. P. Archam-
bault. The Totem system. In Proceedings of the 25rd
International Symposium on Fault-Tolerant Computing
(FTCS-25), pages 61–66, Pasadena, CA, USA, 1995.

[14] OMG. The Common Object Request Broker: Architec-
ture and S pecification. OMG, Feb. 1998.

[15] A. Schiper. Early consensus in an asynchronous system
with a weak failure detector. Distributed Computing,
10(3):149–157, 1997.

[16] R. van Renesse, K. P. Birman, B. B. Glade, K. Guo, et al.
Horus: A flexible group communications system. Tech-
nical Report TR95-1500, University of Cornell (NY),
Mar. 1995.

